
Journal of Engineering Physics and Thermophysics, Vol. 73, No. 3, 2000 

U N S T E A D Y  W A V E  F L O W S  O F  A G A S  S U S P E N S I O N  
WITH ACCOUNT FOR PHASE C H A N G E S  

P. V. Akulich, P. S. Kuts, and 
E. F. Nogotov 

UDC 532.5:66.047 

A system of equations of  unsteady motion of a gas suspension with account for heat and mass transfer 
is presented. As a result of the computational experiment, the effect of the gas vibrations at the channel 
inlet on the motion of the gas suspension and the rate of heat and mass transfer is studied. Specifi- 
cally, it is shown that, in the considered parametric region, the gas vibrations enhance the interphase 
heat and mass transfer. 

An unsteady (pulsating, pulsed) motion of a gas (liquid) enhances heat and mass transfer in a number 
of technological processes, specifically, drying, diffusion, dissolution, etc. Gas pulsations at certain parameters 
increase the relative velocity of phases and decrease the thickness of the diffusion boundary layer. This also 
takes place under the conditions of pneumatic transport, which is widely used for drying dispersed materials. 
Gas pulsations can be generated, for example, by pulsating combustion chambers, valves, vibration emitters, 
etc. 

This work studies the wave motion of a gas suspension in a pneumatic channel with account for heat 
and mass transfer. Consideration is given to the motion of a two-phase dispersed mixture of particles with a 
carrying phase (gas), which consists of two components, namely, a dry air (combustion products) and a water 
vapor. The system of  the equations of motion is formulated using the equations of the gasdynamics of inter- 
penetrating continua of compressible media. For them to be applicable, it is assumed that the dimensions of  the 
particles are markedly smaller than their minimum spacing, and the latter is much smaller than the distance at 
which kinematic and dynamic characteristics of the flow vary noticeably. This basic assumption in this case is 
regarded as feasible. Moreover, the following assumptions, which simplify a mathematical description, are 
adopted. The mixture is monodispersed, with the volume concentration of the dispersed phase being not too 
high, ~32 << 1, owing to which particle interaction and collision can be neglected. The breakdown, coagulation, 
and formation of new dispersed particles are absent. The heat transfer and friction at the channel walls are also 
disregarded. The gas viscosity is taken into account only when the carrying phase interacts with the particles, 
since the Reynolds number that characterizes the gas flow is large. 

The differential equations of conservation of the phase masses, momenta, and energy have the follow- 
ing form [ 1 ]. 

The equations of conservation of the phase masses are of the form 

bP~ + ~ (Plvl) =nj~l (1) 
Ot ~x " '  

bP2 + ~ (P2V2) _ njl~ ; (2) 
bt bx - 
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The equation of conservation of the number of dispersed particles is 

an a(nvo) (3) 
+------~- = 0 ,  

at ax 

with the reduced phase densities Pl and P2, which characterize the phase masses in unit volume of the mixture, 
being 

Pl =131 P(~, E1 +132= 1, E2=rtd3n/6, p°=p2/132, J21 =-J12;  

the equation of conservation for a dry air is 

ap3 + O (P3Vl.__..~) _ 0,  (4) 
3t 3x 

o o p~ o 
P3=P3/£1, P4= -P3"  

The equations of momenta of the phases are of the form 

a (PlVl) a (plV~) - - d ~ _ - -  

3t 3.,¢ 

3 "~aP 
- -  l - -~ e z ) -~x + F I , 

(5) 

,) 

3 (p2v2) 3 (P92;) 3 3 P  

3---7"-- + o q ~ -  2 132 -3"x-x +F2'  
(6) 

where 

(3/3 
F I = -  I-~13~ n f -  ,j . . . .  , _ "~ E 2 n "l'WV~ --  njl2v2 

F 2 = 1 - ~ 132 n f+  -~ ~2 nj12v12 + qjl2v2 - P2 g2,  

YI2=V 1 --V,~. 

The equation of the total energy of the mixture is of the form 

(pIEr + PzE2) 3 
at + -~x [plVlEI + P2v2E2 + P (•IVI + 132V2)] = P2 g2v2' (7) 

and the equation of the influx of the heat of the dispersed phase is of the form 

(P2e2) 3 (P2e2v2) (8) 
a-~-- + ~x - Q2. 

The total and internal energy of the phases, the heat influx to the dispersed phase, and the equation of 
state appear as 

2 
vi * (9) 

E i = e i + -  ~ ,  e l = c l T  | ,  e2=c2T  2, Q2=nq2 , P = p ( ~ R T I / M  1. 
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The saturation temperature as a function of  the pressure over  a fairly wide range is determined f rom 
the equation [1] 

T s (P) = T ' / ln  (P' /P),  

where T' and P" are the approximation parameters;  T" = 4996 K and P" = 6.4072.10 J° Pa. 
The intensity of  the phase change in the direction 2 ---> 1 per dispersed particle is expressed as 

o 0 
P4s - P4 (10) 

J21 = 4~xR2D Sh - - - d ~  ' 

where p°s = PsM4/R*Ts . 
The interphase heat and mass  transfer is defined in terms of  the coefficients o f  heat and mass  transfer 

(or dimensionless Nusselt  and Sherwood numbers) with the aid of  experimental  relations. In this case, where 
the amplitude of  displacement of  the medium A is much in excess of  the particle diameter  the flow over  the 
particles can be considered as quasisteady, i.e., the velocity field at each instant of  t ime obeys the laws of  
steady flow. The displacement amplitude is related to the amplitude of  the vibrational velocity of  the gas and 
frequency as A = ~ / ( 2 r t ~ ) .  At ~ = 30 m/sec and c0 = 100 Hz, the displacement amplitude is A = 0.05 m; 
therefore, A/d2 >> 1. This condition is generally always fulfilled in the plants, which operate with a low vibra- 

tion frequency. Here, the heat and mass  transfer can be assumed to be quasisteady [2, 3]. Then, the coefficient 
o f  mass transfer can be determined from the equation [1 ] 

Sh = 2 + 0.55 Re(~ s Sc °'33 , 

a IVl-v21 
Rel2- , Vt=B1/Pl-  

V I 

( i t )  

The condition o f  phase equilibrium at the interlace TZR = T~(P) is assumed. Here, it is possible to ne- 
glect the thermal resistance inside the particles, setting T2 = T2R. The equation of  the heat influx at the inter- 
face is of  the form 

q2 =J12 r + q l ,  (12) 

T2R -- TI (13) 
47r.R2~,t - - ,  ql = - Nu d 

where Nu = 2 + 0.55 Re])~_ 5 Pr 0'33. 

The relation for the force of  interphase friction, acting on a particle, has the form 

Iv1 - v21 (Vl - v2) 

2 

f 0  1 , f t  24 4 
=. f  ~'~ ~ = + - - + 0 . 4  

Rel2 ~ ' 

with corrections for the flow confinement  

-2.7 
~ = (1 - e2) 

and the compressibil i ty of  the carrying phase 
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Here, the Mach number is 

( 0.427 3 / 
V = 1 + exp " M~1263 Kel2~ 0.88 " 

k 

I M l "~).5 
M12 = ~y--~Tl ) I V l - - V 2 1  " 

The thermal conductivity of  the gas and the dynamic viscosity are determined from the Sutherland 

equation: 

)vl~ - lalg0 - 273T 1 ++cC ~ ' ~ 3 )  ' ~  TI .3/2 

where C is the Sutherland constant, which is C = 124 for the air; N~ = 17.3-10 -6 Pa.sec and ~) = 0.0244 

W/(m.K). 
The diffusion coefficient of  the vapor is 

D=D*{ ,p  )~.273) ' 

where P* = 101,300 Pa and D* = 22,10 4, m/sec. 
The specific heat of  the solid phase is 

c2 = c o (1 - We) + c  5 W e • 

here, W2 = U2/(U2 + 1 ). 
The moisture content of the particles is 

o 
U, P2 1 . 

136 

The specific heat of the gas (the carrying phase) is 

1 o ,  o 
CI -- U 1 + 1 (c3 + C4Ul) ' UI = P 4 / P 3  " 

The initial conditions are 

m 

t = 0 :  v l = v l ;  P = P o ;  T l = 4 7 3 K ;  

0 * 
pl=PoM1/(RTO;  v 2 = 0 ;  T 2 = 2 9 3 K ;  

o 900 k g / m  3 . 0 P2 = ; c2 =e20,  P3 = Pl EI/(UIo "1- 1). 

The boundary conditions were specified as follows: 

X = 0 :  v I = v  I + v  4 sin (2rtmt) ; p ~ - - -  
PIMI 

R*T 1 
o pt~/(Ulo+ 1) ; T 1 =473  K" , p 3  = 
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Fig. 1. Time dependence for the velocity of the gas (1, 2) and particles (3, 
4) at the channel inlet (X = 1): 1, 3) ~# = 0; 2, 4) 30 m/sec. 

Fig. 2. Calculated curves for the velocity of  the gas (1, 3) and particles (2, 
4) in a channel: 1, 2) ~# = 0; 3, 4) 30 m/sec; t = 0.01 sec. 
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Fig. 3. Time dependence for the Nusselt number (a) X = 1; b) X = 0.5): 
1) ~ = 0; 2) 30 m/sec. 

* 0 

e 2=0.0005;  T 2 = 2 9 3 K "  n=6e2/rr .d ~; v 2 = v  2" 9 2 = 9 0 0 k g / m  3. 

v z  / 5  3/'''~ 

t.2 1 / .  

X 

Hence, the gas velocity at the channel inlet is a periodic function of time. The dispersed phase is also intro- 
duced here. 

At the right boundary (X = 1) of the region, the flow was extrapolated beyond the isolated calculation 
domain. 

The resulting system of equations was solved numerically using the McCormack explicit two-step dif- 
ference scheme in conjunction with the method of flow correction [4, 5]. The calculation accuracy was control- 
led by a double recalculation with a half time step. An optimum time step was determined by the stability 
criteria and the assigned exactness of solution. 

The calculations were performed for the following basic parameters: d = 10 -4 m, U m =  0.025, c5 = 
4190 J/(kg.K), c3 = 1000 J/(kg-K), c4 = 1850 J/(kg.K), P6 = 500 kg/m 3, r =  2.26.106 J/kg, Mj = 29 kg/kmole, 
M4 = 18 kg/kmole, R* = 8314 J/(kmole-K), L = 4 m, ), = 1.4, and co = 100 Hz. 

Let us analyze the results of  some variants of  the calculation of the particle motion with account for 
the heat and mass transfer in the pulsating gas flow. At the channel inlet (X = 0), the velocity of the carrying 
phase (the gas) was taken as both a constant quantity and a periodic function of time Vl + ~ sin (2not). In the 
latter case, there is a wave motion of phases in the channel, which execute periodic vibrations with the same 
frequency but with a phase shift (Figs. 1 and 2). Here, the velocity amplitude for the gas is larger than for the 
particles. It should be noted that the time-average velocities of the gas and particles differ insignificantly, ex- 
cept for the section where particle acceleration occurs. In the case with no vibrations at the inlet, the gas ve- 
locity varies along the channel only a little, and its profile is close to a linear one. The phase velocities differ 
markedly only on the acceleration section, whose length for the considered particle diameter is small in com- 
parison with the channel length. Therefore, the relative velocity of  the phase motion IVl- v2l in this case is 
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Fig. 4. Curve for the Nu number in a channel: 
m/sec (1, 3) t = 0.02 sec; 2, 4) 0.1 sec). 

Fig. 5. Time dependence for the moisture content 
(3, 4) of particles at the channel outlet (X = l): 

m/sec. 

A 

0.'o8 o. 2 
1, 2) ~4 = 0; 3, 4) 30 

(1, 2) and temperature 
l, 3) ~ = 0; 2, 4) 30 

1 3 o.8 / 

4 
r i i 

0 O.25 0,5 0.75 X 
Fig. 6. Curves for the moisture content in a channel: 1, 2) ~ = 0; 3, 4) 
30 m/sec [1, 3) t = 0.02 sec; 2, 4) 0.06 sec]. 

much smaller than in the presence of gas vibrations. As a result, the gas vibrations cause the coefficients of 

heat and mass transfer to increase. 
The time dependence for the Nusselt number in the channel midsection and at the channel outlet is 

presented in Fig. 3, whence it is seen that, with the gas vibration, the time variation of the Nusselt number is 
of a wavy character. The mean value of Nu is noticeably larger than in the absence of vibrations. An insignifi- 
cant difference is observed only on the acceleration section. It should be noted that, at the nodes of a standing 
wave, the Nu numbers in the two cases differ slightly, and in the loops their values with the gas vibration are 
maximum and much larger than in the absence of vibrations (Fig. 4). Thus, the gas vibrations enhance the heat 
and mass transfer. This is also supported by the time dependences of the moisture content (Fig. 5) and by the 
moisture-content profiles along the channel for instants of time of 0.02 and 0.06 sec (Fig. 6). It is seen from 

Fig. 6 that, in the initial period of time (t = 0.02 sec), the moisture contents of the particles in the two cases 
are slightly different. This results from the fact that, in this period, the particle acceleration occurs and the 
relative phase velocities are close. Subsequently, the vibrational mode leads to a higher-rate mass transfer and 
thus to a greater decrease in the moisture content of the particles. As the mode reaches a steady state, the 
moisture content varies insignificantly. In both cases, the particle temperature rises from the initial value to the 
temperature of adiabatic saturation of the gas (the wet-bulb temperature) and remains constant. Here, consid- 
eration is given to the first period of drying, i.e., to the removal of  free moisture. 

Thus, for the given formulation of the problem and the parameters considered it can be concluded that 
the specification of the gas vibrations at the boundary of the channel region in the form of a periodic function 
of time leads to an enhancement of the heat and mass transfer. In particular, this can be used in pneumatic 
tubes, which are employed for effecting the heat and mass transfer. 

This work was carried out with financial support from the Fund for Fundamental Research of the Re- 
public of  Belarus, grant No. 006.018. 
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N O T A T I O N  

c, specific heat, J/(kg.K); d, particle diameter, m; D, diffusion coefficient, m2/sec; E, total energy, J/kg; 
e, internal energy, J/kg; J12, rate of phase change, kg/sec; L, channel length, m; M, molecular mass, kg/kmole; 
n, number of particles per unit volume; P, pressure, Pa; q, heat flux, W; r, heat of  phase change, J/kg; R, 
particle radius, m; R*, universal gas constant, J/(kmole.K); T, temperature, K; U, moisture content, kg/kg; v, 
velocity, m/sec; x, coordinate, m; X = x/L, dimensionless coordinate; 7, adiabatic exponent; e, volume concen- 
tration of particles, m 3 of solid phase/m 3 of mixture; X, thermal conductivity, W/(m-K); It, dynamic viscosity, 
Pa.sec; v, kinematic viscosity, m2/sec; Pi, reduced phase density, which defines phase mass per unit volume of 
mixture (of solid phase and carrying phase), kg/m3; p~J, at n = 1, 2, phase density, and at n ~: 1, 2, density of 
phase component, which defines component mass per unit volume of carrying phase, kg/m3; t, time, sec; ~0, 
frequency, Hz. Subscripts: 1, carrying phase; 2, dispersed phase; 3, dry air; 4, water vapor; 5, water; 6, dry 
particle; 0, initial (constant) value; s, saturation state. Superscripts: 0, true values; A, amplitude. 
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